題目:Adaptive Estimation of Functional-coefficient Cointegration Models with Nonstationary Volatility
主講人:涂云東 助理教授 (北京大學)
時間:2016年12月21日(周三)10:00-12:00
地點:主樓418會議室
主講人介紹:
涂云東,北京大學光華偉德國際1946bv官網商務統計與經濟計量系和北京大學統計科學中心聯席助理教授,研究員。2012年獲美國加州大學河濱分校經濟學博士學位,同年6月加入北大光華。學術論文發表在Journal of Econometrics, Econometric Reviews, Journal of Business and Economic Statistics, Statistica Sinica等國際一流專業雜志。理論研究領域涵蓋非參數/半參數計量經濟模型,模型選擇和模型平均,網絡數據建模,金融計量,信息計量經濟學,模型設定檢驗等;應用研究包含宏觀經濟預測,價格指數建模,網絡數據分析,股票市場預測,生產率建模等。
內容簡介:
This paper analyzes functional-coefficient cointegration models with nonstationary (unconditional) volatility of a general form. The kernel weighted least squares (KLS) estimator of Xiao (2009) is subject to potential efficiency loss, and can be improved by an adaptive kernel weighted least squares (AKLS) estimator that adapts to heteroscedasticity of unknown form. The AKLS estimator is shown to be as efficient as the generalized kernel weighted least squares estimator asymptotically, and can achieve significant efficiency gain relative to the KLS estimator in finite samples. An illustrative example is provided by investigating the purchasing power parity hypothesis.
(承辦:國際貿易與金融系,科研與學術交流中心)