啦啦啦精彩视频免费观看在线,丰满大屁股熟女啪播放,暖暖视频在线观看免费最新,亚洲V天堂,无码爽到爆高潮抽搐喷水在线观看,91亚洲国产一区二区

ENGLISH
您所在的位置: 首頁» 新聞中心» 講座預告

7-13李彤教授學術(shù)報告:Quantile Treatment Effects in Difference in Differences Models with Panel Data

  時間:2018年7月13日上午10:00-11:30

  地點:主樓六樓

  報告人簡介: Tong Li is Gertrude Conaway Vanderbilt Professor of Economics at the Department of Economics, Vanderbilt University. His primary research and teaching interests are microeconometrics with a focus on identification and inference of econometric models with latent variables, and game-theoretic models.  He also studies dynamic/nonlinear panel data models, and empirical microeconomics with a focus on empirical analysis of strategic behavior of agents with asymmetric information. His research has been supported by the National Science Foundation and the American Statistical Association Committee on Law and Justice Statistics. He has served as an associate editor of the Journal of Econometrics, the Journal of Applied Econometrics, the Journal of Econometric Methods, and the Journal of Economic Behavior and Organization, and he is currently serving as Co-Editor of the Journal of Econometric Methods. Since 1999 he has supervised thirteen Ph.D. dissertations and has placed students on faculty at London School of Economics, National Chi-Nan University, North Carolina State University, National University of Singapore, Queens University, Remin University of China, Shanghai Jiao Tong University, Temple University, among others.

  講座內(nèi)容摘要: This paper considers identification and estimation of the Quantile Treatment Effect on the Treated (QTT) under a straightforward distributional extension of the most commonly invoked Mean Difference in Differences assumption used for identifying the Average Treatment Effect on the Treated (ATT). Identification of the QTT is more complicated than the ATT though because it depends on the unknown dependence between the change in untreated potential outcomes and the initial level of untreated potential outcomes for the treated group. To address this issue, we introduce a new Copula Stability Assumption that says that the missing dependence is constant over time. Under this assumption and when panel data is available, the missing dependence can be recovered, and the QTT is identified. Second, we allow for identification to hold only after conditioning on covariates and provide very simple estimators based on propensity score re-weighting for this case. We use our method to estimate the effect of increasing the minimum wage on quantiles of local labor markets' unemployment rates and find significant heterogeneity.

  (承辦:應用經(jīng)濟系、科研與學術(shù)交流中心)

TOP